本团队唐学峰副教授、2023级硕士生彭琪越等在Journal of Material Science and Technology发表研究论文。
摘要:Laminated metal composites (LMCs) have widespread application prospects and are set to become indispensable in addressing modern engineering challenges owing to their capability of leveraging the synergy between different metals and tailoring performance by flexibly regulating the layered configuration. The plastic forming process, as a promising advanced manufacturing technology, has been increasingly adopted for the fabrication of LMC components due to its advantages of high material utilization rate, high production efficiency, and excellent mechanical properties of the product. This review delved into the research progress on the plastic-forming process of LMCs, including rolling, extrusion, spinning, etc. It outlined the forming principles, unique characteristics, bonding mechanisms, and the influence of key process parameters on deformation, microstructure, and property. This review focused on the heterogeneous deformation and interfacial regulation of LMCs, providing insights into the mechanisms of heterogeneous deformation, damage and fracture, and formation mechanisms of intermetallic compounds. It also delineated the experimental characterization and numerical modeling methods to elucidate the heterogeneous deformation behavior, as well as the approaches to evaluating and enhancing the performance of LMCs. Finally, the challenges and prospects of manufacturing high-performance LMCs by plastic forming process are orchestrated.